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Abstract
We consider the EPR experiment in the energy-based stochastic reduction
framework. A gedanken setup is constructed to model the interaction of
the particles with the measurement devices. The evolution of particles’
density matrix is analytically derived. We compute the dependence of the
disentanglement rate on the parameters of the model, and study the dependence
of the outcome probabilities on the noise trajectories. Finally, we argue that
these trajectories can be regarded as nonlocal hidden variables.

PACS numbers: 03.65.Ta, 02.50.Ey, 03.65.Ud, 03.65.Yz

1. Introduction

A pure quantum state of a system is a vector in a Hilbert space, which may be represented
as a linear combination of a basis of eigenstates of an observable (self-adjoint operator) or
of several commuting observables. Let us suppose that the eigenvalues corresponding to the
eigenstates of the Hamiltonian operator of a system are the physical quantities measured in an
experiment. If the action of the experiment is modeled by a dynamical interaction induced by
a term in the Hamiltonian of the system, and its effect is computed by means of the standard
evolution according to the Schrödinger equation, the final state would retain the structure
of the original linear superposition. One observes, however, that the experiment provides a
final state that is one of the basis eigenstates and the superposition has been destroyed. The
resulting process is called reduction or collapse of the wavefunction.

The history of attempts to find a systematic framework for the description of this process
goes back very far in the development of quantum theory (e.g., the problem of Schrödinger’s
cat [1]). In recent years significant progress has been made. Rather than invoking some random
interaction with the environment and attributing the observed decoherence, i.e. collapse of a
linear superposition, to the onset of some uncontrollable phase relation, more rigorous methods
have been developed. These methods add to the Schrödinger equation stochastic terms
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corresponding to Brownian fluctuations of the wavefunction [2–10], generally understood as
arising from the presence of the measurement device.

In this paper, we apply some of these state reduction methods to the phenomena considered
in Bohm’s formulation [11] of the Einstein–Podolsky–Rosen paradox [12] (henceforth the
EPRB paradox), later analyzed by Bell for its profound implications [13] and explored
experimentally by Aspect et al [14]. The system to be studied consists of a pair of spin- 1

2
particles in the singlet state

|ψs〉 = 1√
2
(|↑↓〉 − |↓↑〉), (1)

the arrows denoting the spin components of the particles relative to some arbitrary axis. The
determination of the spin state of one of the particles implies with certainty the spin state of
the other, even when the particles are very far apart. The particles are therefore said to be
entangled.

The question is often raised as to how the state of the second particle can respond to
the arbitrary choice of direction in the measurement of the first. This question is dealt with
here by constructing a gedanken setup modeling the interaction of the particles with the
measurement devices. On this basis, using the mathematical models recently developed for 
describing the reduction, or collapse, of the wavefunction, we answer this question and give a
mathematical description of the process underlying such a measurement.

The paper is organized as follows. We begin in section 2 by reviewing the energy-based
stochastic extension of the one-particle Schrödinger equation, and discuss its generalization to
noninteracting multiparticle systems. In section 3, we present a gedanken setup for studying
the EPR experiment and show that it leads to the expected quantum-mechanical predictions.
Next, in section 4 we analytically compute the stochastic expectation of the particles’ density
matrix, and quantify their disentanglement rate. In section 5, we simulate the evolution of the
state of the particles for different random realizations of the noise, and argue that the noise
trajectories can be regarded as nonlocal hidden variables. We end by discussing future avenues
of research.

2. Energy-based stochastic state reduction

2.1. Energy-based stochastic extension of the Schrödinger equation

In the energy-based stochastic reduction framework the Schrödinger equation is extended as
follows [7–9]:

d|ψ(t)〉 = −iĤ |ψ(t)〉 dt − ς2

8
(Ĥ − H(t))2|ψ(t)〉 dt +

ς

2
(Ĥ − H(t))|ψ(t)〉 dW(t). (2)

Here H(t) =̂ 〈ψ(t)|Ĥ |ψ(t)〉 (we assume throughout that |ψ(t)〉 is normalized, consistent with
equation (2) as it is norm preserving), W(t) is a standard Wiener process and ς is a parameter
characterizing the reduction time scale. (Note the choice of ‘natural’ units h̄ = c = 1.
Accordingly, all quantities throughout the paper are expressed in some arbitrary units of
length [�].)

From the Itô calculus rules it immediately follows that the above process has two basic
properties:

(i) Conservation of energy

H(t) = H(0) + ς

∫ t

0
dW(s)V (s), (3)

where V (t) =̂ 〈ψ(t)|(Ĥ − H(t))2|ψ(t)〉 is the variance of the energy process H(t).

2
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(ii) Stochastic reduction

dV (t) = −ς2V 2(t) dt + ςβ(t) dW(t), (4)

where β(t) =̂ 〈ψ(t)|(Ĥ − H(t))3|ψ(t)〉 is the third moment of the energy deviation.

It follows from equation (4) that the expectation E[V (t)] of the variance process obeys
the relation [7, 8]

E[V (t)] = E[V (0)] − ς2
∫ t

0
dsE[V (s)]2. (5)

Since V (t) is positive, this implies that E[V (t → ∞)] → 0 and (up to measure zero
fluctuations) V (t → ∞) → 0. And since V (t) = 〈ψ(t)|(Ĥ − H(t))2|ψ(t)〉, V (t) = 0
implies 〈ψ(t)|(Ĥ − H(t))|ψ(t)〉 = 0 or Ĥ |ψ(t)〉 = H(t) |ψ(t)〉, so that |ψ(t)〉 is an
eigenstate of the Hamiltonian. Assuming no degeneracy, the system therefore reduces to
one or another of the eigenstates of the Hamiltonian Ĥ , in accordance with the statistical
predictions of standard quantum mechanics [8]. Therefore, the expectation of the final
configuration E[|ψ(t → ∞)〉 〈ψ(t → ∞)|] corresponds to a mixed state, with each of the
diagonal elements an eigenstate of Ĥ .

Note that the framework we have described cannot differentiate between degenerate
eigenstates. When this is the case, as in the standard theory [16], the reduction process drives
the system to degenerate subspaces with the original relative phase between the spanning
eigenstates remaining unchanged.

2.2. Extension to noninteracting multiparticle systems

There is nothing in the previous subsection to limit the discussion to single-particle systems.
The Hamiltonian in equation (2) may just as well represent a multiparticle system. This,
however, is not the only possible generalization to multiparticle systems, and indeed there are
cases where it is not suitable. To see this, and in anticipation of the following section, let us
consider a pair of noninteracting particles A and B. The Hamiltonian is now a direct sum

Ĥ = ĤA ⊕ Ĥ B. (6)

We assume that the particles are very far apart, and that the environment does not carry
pervasive long-range correlations. Under these conditions the evolution of the state’s stochastic
expectation E[ρ(t)] (ρ(t) = |ψ(t)〉 〈ψ(t)|) should be local, in the sense that no correlations,
quantum or classical, are generated.

Bearing this in mind, let us plug the Hamiltonian equation (6) into equation (2). Averaging
over the noise we obtain a Lindblad-type equation [17, 18] for the state’s stochastic expectation

d

dt
E[ρ(t)] = −i[Ĥ , E[ρ(t)]] − ς2

8

∑
i,j=A,B

[Ĥ i, [Ĥ j , E[ρ(t)]]]. (7)

This equation is causal (does not allow for superluminal signaling), as is easily established by
tracing over any of the two subsystems. However, the mutual information5 may increase with
time. The evolution is therefore nonlocal, as may well have been expected considering that
both systems are driven by the same noise.

5 The mutual information of two systems is defined as IAB = SA +SB −SAB , where Si and SAB are the von-Neumann
entropies of system i and the composite system, respectively, and serves as a quantitative measure of the total amount
of correlations, quantum and classical, between the systems.

3



J. Phys. A: Math. Theor. 41 (2008) 255303 J Silman et al

However, a local evolution equation for the state’s stochastic expectation can be achieved
if we have each of the systems driven by an independent noise term. This means that
equation (2) must be generalized as

d|ψ(t)〉 = −iĤ |ψ(t)〉 dt − 1

8

∑
i=A,B

ςi
2(Ĥ i − Hi(t))

2|ψ(t)〉 dt

+
1

2

∑
i=A,B

ςi(Ĥ i − Hi(t))|ψ(t)〉 dWi(t), (8)

where ςi governs the reduction rate of particle i to the eigenstates of Ĥ i and dWi(t) dWj(t) =
δij dt . Indeed, the above process invariably drives the system to product states of the form
|EA〉⊗|EB〉, where Ĥ i |Ei〉 = Ei |Ei〉, with the same probabilities as predicted by the standard
theory [8].

The corresponding Lindblad equation for the state’s stochastic expectation is now given
by

d

dt
E[ρ(t)] = −i[Ĥ , E[ρ(t)]] −

∑
i=A,B

ςi
2

8
[Ĥ i, [Ĥ i, E[ρ(t)]]]. (9)

Note that in standard quantum theory this evolution can only arise from the respective coupling
of a pair of separate noninteracting systems to noncorrelated environments.

3. Stochastic reduction in the EPRB experiment

In this section, we construct a gedanken setup to show how the energy-based stochastic
reduction framework can provide us with a consistent description of the EPRB experiment.

We consider a pair of spin-half particles, A and B, with vanishing total spin and momentum,
moving in opposite directions. Along the path of each particle a spin measurement device
is placed. With no loss of generality we assume that the measurement device in the path of
particle A measures its spin component along the z-axis, and that the measurement device
in the path of particle B measures its spin component along n, where n is some unit vector
pointing in an arbitrary direction.

So long as the particles are far from the measurement devices the Hamiltonian governing
their (free) evolution is given by

Ĥ 0 = p2
A

2mA

+
p2

B

2mB

. (10)

However, once the particles approach some neighborhood of the detectors (which we take to
happen simultaneously) we assume that Ĥ 0 is corrected by the addition of a perturbation

Ĥ int = µAσz
A ⊗ 11 + µB11 ⊗ σ n

B (11)

describing the local interaction of the particles with the measurement devices. Here µi

denotes the strength of the coupling of particle i to the corresponding measurement device
and σ n

B = σB · n. The eigenstates of the perturbed Hamiltonian Ĥ = Ĥ 0 + Ĥ int are
products of momentum and spin eigenstates, and are fully specified by the eight eigenvalues
−∞ < p

(i)
A , p

(i)
B < ∞ (i = x, y, z), and σ z

A, σ n
B = ±1.

The continuous spectrum of the momentum operators gives rise to an irremovable
degeneracy in Ĥ . Nevertheless, for wave packets localized in momentum space and sufficiently
large values of the µi this residual degeneracy is negligible. In all that follows we shall therefore
make the approximation

Ĥ 
 Ĥ int. (12)

4



J. Phys. A: Math. Theor. 41 (2008) 255303 J Silman et al

The four possible spin outcomes are then given by |↑↗〉, |↑↙〉, |↓↗〉 and |↓↙〉, the slanted
(vertical) up and down arrows denoting spin-up and spin-down eigenstates of σ n

B

(
σ z

A

)
,

respectively, with the corresponding probabilities

P↑↙ = P↓↗ = 1

2
cos2 θ

2
, P↑↗ = P↓↙ = 1

2
sin2 θ

2
, (13)

where θ is the angle between ẑ and n. The reduction process ultimately reproduces the results
of the standard theory.

It is important, lending further credibility to our setup, that the measurement of the spin
of only one of the particles suffices to induce the reduction. This is clearly seen by recasting
Ĥ int in its diagonal form

Ĥ int =
∑

i=↑,↓

∑
j=↗,↙

λij |ij 〉〈ij |, (14)

where λ↑↗ = −λ↓↙ = µA + µB and λ↑↙ = −λ↓↗ = µA − µB , and setting one of the
coupling strengths, say µA, equal to zero. Indeed, this is approximately what will be observed
at time t 
 1/ςA for ςA  ςB .

We also note that when µA equals µB (−µB) the degeneracy of the states |↑↙〉 and |↓↗〉
(|↑↗〉 and |↓↙〉) is not removed. This, however, is merely an artifact of not taking into account
the quantum nature of the measurement devices and the fields generating the coupling. The
local uncertainty of the fields, together with the absence of significant long-range correlations,
lifts this degeneracy.

Finally, we should remark that if the two particles are identical, then the Hamiltonian
must be symmetric under the interchange of the particle indices. However, since the particles
are very far apart when the measurement takes place, there is no overlap of the one-particle
wavefunctions, and the symmetrization or anti-symmetrization of the composite wavefunction
is not required. Thus, the presence of two widely separated measurement devices can split
the degeneracy into distinct states, which can, in fact imply that Ĥ int is not symmetric under
particle exchange.

4. Evolution of the state’s stochastic expectation

To study the evolution of the state’s stochastic expectation in our setup we simply substitute
µAσz

A and µBσ n
B for ĤA and Ĥ B into equation (9). We thus have

d

dt
E[ρ(t)] = −iµA

[
σ z

A,E[ρ(t)]
] − ς2

AµA

8

[
σ z

A,
[
σ z

A,E[ρ(t)]
]]

− iµB

[
σ n

B,E[ρ(t)]
] − ς2

BµB

8

[
σ n

B,
[
σ n

B,E[ρ(t)]
]]

. (15)

This equation is linear in E[ρ(t)], and can therefore be transformed into a linear equation
for a vector whose components are the 16 elements of E[ρ(t)]. An analytical solution can
then be obtained by bringing the 16 × 16 matrix, representing the action of the operators on
the right-hand side of the equation, to its Jordan normal form. When working in the basis
↑↗, ↑↙, ↓↗,↓↙ the solution reads as follows:

1

2

⎛
⎜⎜⎜⎜⎝

sin2 θ
2 − 1

2Q

B sin θ 1

2Q

A sin θ Q


AQ

B sin2 θ

2

− 1
2QB sin θ cos2 θ

2 −Q

AQB cos2 θ

2 − 1
2Q


A sin θ

1
2QA sin θ −QAQ


B cos2 θ
2 cos2 θ

2
1
2Q


B sin θ

QAQB sin2 θ
2 − 1

2QA sin θ 1
2QB sin θ sin2 θ

2

⎞
⎟⎟⎟⎟⎠ (16)

5
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Figure 1. The negativity as a function of the coupling strengths µA and µB (ςA = ςB =
1[�]1/2, t = 1[�] and θ = 3π/5). On the (dark blue) flat surface the negativity equals zero. The
disentanglement time is finite unless µA or µB vanishes.

with Qi =̂ exp
(
µi

(
4i − µiς

2
i

)
t/2

)
(i = A,B), and θ the angle between ẑ and n. We note

that the Qi can be decomposed into a product of exp(2iµit) and exp
(−µ2

i ς
2
i t/2

)
representing

the contributions of the unitary and stochastic processes, respectively. We also note that in
the limit that t → ∞ the off-diagonal terms vanish and the density matrix reproduces the
expected measurement outcomes and probabilities.

We now wish to examine the transition of the stochastic expectation of the density matrix
from the initial maximally entangled singlet state to the mixture of the final outcomes, paying
particular attention to the rate of the disentanglement. While for pure states, the entanglement
is quantified by the von-Neumann entropy, there is no single measure of entanglement for
mixed states. One of the standard measures is the negativity [19], 1

2 (‖ρTi ‖ − 1), where ρTi ,
the partial transpose with respect to i of ρ, is obtained from ρ by transposing the indices of
system i, which is just minus the sum of the negative eigenvalues of the ρTi 6 [20, 21].

Numerical results are presented in figures 1–3. Figure 1 illustrates the dependence of the
negativity on the coupling strengths, µA and µB . We see that unless µA or µB vanishes, the
disentanglement time is finite. This phenomenon, termed ‘entanglement sudden death’ [22],
is not unique to our setting and is typical of open systems dynamics [23]. For short times the
rate of disentanglement is roughly dependent on

√
µA

2 + µB
2, while for long times becomes

linear. Figures 2 and 3 show the negativity as function of time for different values of ςA = ςB

and θ , respectively.

5. Noise trajectories

Equation (8) gives rise to an entropy conserving evolution. In particular, this means that a pure
state remains pure. The trajectories realized by the Wi(t) during the evolution fully specify the
state’s history. However, as there is no means of determining these, all accessible information
is contained in the state’s stochastic expectation. The trajectories can therefore be regarded as
hidden variables7, i.e. indeterminable variables carrying information regarding the state of the
system unavailable in the standard quantum-mechanical description.

6 When considering the entanglement between two systems it is irrelevant which of the indices is transposed.
7 For a somewhat different approach see [15].
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Figure 2. The negativity as function of time for different values of the ςA = ςB (θ = 3π/5, µA =
µB = 1[�]−1). The legend gives the value of ςA

2/8 (and ςB
2/8) for each of the curves.

Figure 3. The negativity as function of time and θ (ςA = ςB = 1[�]1/2, µA = µB = 1). The
legend gives the value of θ for each of the curves.

From the relation dWi(t)dWj(t) = δij dt it does not follow that the trajectories are local
hidden variables. Indeed, any hidden variable theory adhering to the statistical predictions
of standard quantum mechanics must violate some Bell inequality, and as such our setup is
manifestly nonlocal. Explicitly, this just means that the both WA(t) and WB(t) determine the
final state of each of the particles (rather than Wi(t) determining the final state of particle i on
its own). This point is illustrated in figures 4 and 5, which present the results of numerical
iterative solutions to equation (8) with randomly generated noise terms. Figure 4 explicitly
shows how, for the same realization of WA(t), different realizations of WB(t) lead to different
outcomes in the spin measurement of particle A (and particle B). It is also interesting that
in this case the probabilities for the measurement outcomes no longer agree with those of
quantum mechanics, as is evident from figure 5.

7
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Figure 4. Four realizations of the collapse process. The probabilities for the four different outcomes
(1 =̂ ↑, 0 =̂ ↓) are plotted as a function of time (µA = µB = 1[�]−1, ςA = ςB = 0.14[�]1/2 and
θ = 5π/11). The same realization of WA(t) was used in all of the runs, whereas WB(t) varies
from one run to the next. We see that the final outcome of particle A depends not only on WA(t)

but on WB(t) as well.

To see how this comes about we must go back to equation (8). Even though it
describes a pair of uncoupled systems, it gives rise to a potentially disentangling (and
entangling) evolution, because each of the Hi(t) depends on the full state of the system
(Hi(t) = trj �=i[ρ(t)Ĥ i]), and therefore on Wj �=i (s � t). Note, however, that this nonlocality
does not allow for superluminal signaling since the trajectories are ‘hidden’.

6. Some concluding remarks

We have discussed Bohm’s formulation of the EPR experiment in the energy-based stochastic
reduction framework. In particular, we have seen how the presence of the measurement
devices induces the reduction of the singlet state to the expected outcome product states with
correct probabilities as predicted by the standard theory and have given the explicit time
evolution of the process of disentanglement. As an extension of this idea, one may consider
a problem with a natural degeneracy of some initial state where the presence of effective
detectors of some type induces a perturbation in which stochastic reduction takes place, as
in the asymptotic cluster decomposition of products of quantum fields reducing an n-body
system to mk-body systems, or the formation of local correlations in n-body systems such
as liquids, or spontaneous symmetry breaking. In all these cases, due to the existence of
continuous spectra, there will be some residual dispersion in the final state, although possibly

8
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Figure 5. Dependence of the outcome probabilities on the noise trajectories. Each of the figures
displays the results of a different batch of 10 000 simulation runs. For the first three figure, a
different realization WA(t) was randomly chosen, while WB(t) was let to randomly vary from
one run to the next (the averaging over noise was carried out only over WB(t). We see that
different realizations of WA(t) lead to different outcome probabilities that do not agree with those
of quantum mechanics. In the fourth figure, both WA(t) and WB(t) vary with each run, and the
quantum-mechanical predictions are obtained.

very small. We are currently studying possible applications of the methods discussed here to
such configurations.
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